PEIRCE, TURING AND HILBERT:
A SKETCH OF PRAGMATISM VS. FORMALISM

Arthur Frankiin Stewart

David Hilbert (1862-1943), the leading German
mathematician of his generation, expressed through what
he termed "my proof theory" the conviction that all questions in
mathematics could be answered by algorithmic means.
The Hilbert program of formalism, as it came to be known,
counted among the items in its charter the belief that the
truth or falsehood of any given mathematical statement could
be obtained by some mechanical implementation of fixed
rules. The idea of such a definite method employing
fixed rules explicitly required each group or listing of such
rules or steps to be of finite length. Each and every
mathematical issue was seen as decidable according to
some such definite method. This question of decidability, or
the Entscheidungsproblem, in its German formulation, was
a major component of the Hilbert program, a program
which sought to delineate all of mathematics in terms of strictly
formal properties. From this point of view, the values of
given equational symbols in and of themselves are irrelevant:
the patterns that occur are what determine meaning.
Addressing this issue of formalism for geometry, Hilbert
asserted as early as 1891: "It must be possible to replace in
all geometric statements the words point, line, plane by table,
chair, beer-mug” (Reid 1970: 264). This being the case,
the powers of empirical observation involved in using
points, lines, and planes in visually observable geometric
constructions are critically diminished in value, if not rendered
entirely superfluous. What matters, instead, is the formal
consistency and integrity of the system itself. For Hilbert,
then, the statement "table is to chair as chair is to beer-
mug" was formally equivalent to "point is to line as line is {o
plane.”

This type of anticipated formal equivalence relies
explicitly on the principle of axiomatization. The primacy of
axioms as components of formalized systems of geometry had
been in mathematical currency since antiquity:
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Ever since Euclid, axiomatizing a theory has meant
presenting it by singling out certain propositions and
deducing further ones from them; if the presentation is
complete, it should be the case that all statements
which could be asserted in the theory are thus
deducible. (Parsons 1967)

Thus, a completely axiomatized system should provide for
an investigator to deduce each and every true statement
within “it. Hilbert entertained no doubts that his own
efforts toward an exhaustive formalization of mathematics
would not only prove successful in this regard, but that such
efforts towards a thoroughgoing axiomatization of the subject
could be accomplished with actuat ease: "Hilbert . . . thought of
his programme as one of tidying up loose ends" (Hodges

-1983: 93, emphasis added). Thus, in 1899 Hilbert went

beyond his table, chair, and beer-mug speculations of 1891,
.constructing an axiomatization of Euclidean geometry that did
not rely on references to concrete, visually observable
examples in. the physical world. With this important
development Hilbert had accomplished a major step toward
separating abstract, formalized aspects of mathematics from
possible empirically derived origins and applications. This
success in the construction of his “formula game" committed
Hilbert to what was clearly an anti-experimental theory of
knowledge:

For this formula game is carried out according to
certain definite rules, in which the technique of our
thinking is expressed. These rules form a closed
system that can be discovered and definitively stated.
The fundamental idea of my proof theory is none other
than to describe the activity of our understanding, to
make a protocol of the rules according to which our
thinking actually proceeds. . . . If any totality of
observations and phenomena deserves to be made

the object of serious and thorough investigation, it is

this one—since, after all, it is a part of the task of
science to liberate us from arbitrariness, sentiment
and habit and to protect us from the subjectivism that
[has] already made itself feit. (Reid, 1970: 185-86).
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Such a closed system, one which operates according to a pro-

tocol of rules that can be definitively stated is, in its formalized
employment of axioms and their treatment by algorithmic
means, what | term a "mechanicalistic” or anti-pragmatic epis-
temology: it abjures considerations of those same conceivable
effects that are central to Peirce's pragmatic maxim. 3 _

Qur story resumes with Hilbert's address to the Second _
international Congress of Mathematicians held in Paris in
1900. His manuscript contained a list of twenty-three ques-
tions whose investigation he beligved would help define the
future course of mathematics.* Here Hilbert's intended
axiomatization of the whole of mathematics attained a new
sophistication by way of specificity. The last of his questions
dealt with devising algorithmic means for, as Hopcroft put it,
"establishing the truth or falsity of any statement in [the]
language of formal logic called the predicate calculus” (1984:
86). Hilbert believed that the answer to this question must
necessarily be an affirmative one, for not to be able to employ
a strictly algorithmic, deductive apparatus in the establishment
of all statements in that calculus would jeopardize the security
of his overall system. In 1904, however, his public declarations
on foundationalism ceased, not to be resumed until his
address to the Swiss Mathematical Society in Zurich during
1917. Here he announced four problems for the foundations
issue. The last of these concerned the decidability of a
mathematical question by a finite procedure. As Reid
suggests, the lecture might as well have been named "In
praise of the axiomatic method" (1970: 151}. One might say, in
view of the demand for a finite, mechanical procedure, it
should have been titled "In praise of the algorithmic or
mechanicalistic method." Another eleven years were to elapse
before Hilbert stated his aim for the algorithmic soivability of
mathematical questions in the form which is of interest to us
here.

He chose a most conspicuous venue in which to state
this program, namely the 1928 International Congress of
Mathematicians held in Bologna. This was the first set of
international meetings to which the Germans had been invited
since World War |:

At that 1928 congress, Hilbert made his questions
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quite precise. First, was mathematics complete, in the
technical sense that every statement (such as "every
integer is the sum of four squares”) could either be
proved, or disproved. Second, was mathematics
consistent, in the sense that the statement "2 + 2 = 5"
could never be arrived at by a sequence of valid steps
of proof. And thirdly, was mathematics decidable? By
this he meant, did there exist a definite method which
could, in principle, be applied to any assertion, and
which was guaranteed to produce a correct decision
as to whether that assertion was true. (Hodges, 1983:
91)

Hilbert again believed that the answers to these questions
must be affirmative ones. However, the Czech mathematician
Kurt Gddel was to demonstrate, in 1931, that arithmetic, for
instance, could not meet the demand for corrapiteateness.5 It is,
however, how the question of decidability, or the
Entscheidungsproblem, was answered by Alan Turing (1912-
1954) that is of greater importance for the present analysis.

- Turing, after having turned in his dissertation at
Cambridge, went on to enroll in an advanced course in the
foundations of mathematics under M. H. A. Newman. Newman
had heard Hilbert's 1928 address, and in the conduct of his
own foundations course brought Turing up-to-date with how
the completeness and consistency demands of Hilbert had
been handled by Gédel. The question about decidability of
mathematical systems in general and arithmetic in particular,
however, still remained unanswered. Turing was to
demonstrate how this question required a negative answer.

Newman had recast this third question, modifying the
thrust of it from decidability as to truth or falsity, to decidability
as to provability. We can enunciate this issue as the question,
"Is there a purely mechanical means for deciding the
provability of any proposition X of a mathematical system.” For
the Hilbert program, as Hodges comments, it was required that
. the truth of any assertion X "be shown by working within the
axiomatic system” (1983: 92). Could an axiomatic system
show the truth of every true mathematical assertion which was
contained in it? If so, the system would be complete, and in
one sense, then, the Entscheidungsproblem would be settled
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in the affirmative. If not, then the system would be incomplete
and the Entscheidungsproblem, in this sense, would be
settled in the negative. Of course, Gédel had already disturbed
the alleged impeccability of the Hilbert system by showing
arithmetic, as a system, to be incomplete:

This was an amazing new turn in the enquiry, for
Hilbert had thought of his programme as one of tidying
up loose ends. It was upsetting for those who wanted
to find in mathematics something that was absolutely
perfect and unhassailable; and it meant that new

questions came into view. . . . [But, the] third of
Hilbert's questions still remained open. (Hodges,
1983: 93)

This third of Hilbert's questions deals with our second and
further sense of the Entscheidungsproblem, namely:

Was there a definite method, or as Newman put it, a
mechanical process which could be applied to a
mathematical statement, and which would come up
with the answer as to whether it was provable?
{Hodges, 1983: 93)

For this further decision problem, it is not required that a
decision process be effected within the system: what is crucial
is merely that the decision process be a mechanical or
algorithmic one. Thus, whether a proposition is provable or not
within the system may be decided by a process that is not itself
contained within the system. Moreover, what is being decided
upon is the provability of statements and not, at least directly,
their truth.

Turing exquisitely demolished the hope that Hilbert's
third question could be answered in the affirmative. In doing
so, he relied on the notion of Turing machines as an
interpretation of mechanical or algorithmic procedures. He
employed this notion to prove false the claim that each and
every statement of a given mathematical system could be
mechanically identified by an algorithmic process to be
provable or not.

What, then, is a Turing machine? According to Turing




116

himself, each individual Turing machine computes a
"computable number” according to its "machine configuration”
or algorithm. In his "On Computable Numbers" of 1937 Turing
had defined a computable number as a number the
expression. of which as a decimal is "calculable by finite
means." For Newman's version of Hilbert's decidability
question to be answered in the affirmative, we should be able
to determine, by purely mechanical, finite means, for each and
every mathematical assertion of any given system, whether
that assertion is provable or not. This, however, can be shown
~ to be impossible. In order to appreciate why this is impossible,
we need to bear in mind an important fact that Godel had
established in his classic work of 1931, namely, that
mathematical propasitions in a mathematical language of the
sort Hilbert wished to employ can be correlated one-to-ane
with numbers (see again, please, note 5, above). The exact
technique for establishing this correlation between
propositions and numbers, known as "Gddel numbering," is
not a subject that requires detailed discussion for the present.

What is Important is that Godel numbering not only enables :

one to express propasitions of a given mathematical system in
terms of numbers, it also enables one to express assertions
about a given mathematical system in terms of numbers. In
this way, then, we can correlate the set of provable
propositions of a mathematical system with a unique set of
numbers, the Gadel numbers of the provable propositions of
that system. For Hilbert's decidability question, then, it follows
that the set of provable propositions of a mathematical system
in its entirety is ascertainable by an algorithmic procedure, that
is, ascertainable by a machine, if and only if its correlated set
of Gddel numbers is decidable in its entirety by an algorithmic
or machine procedure.
_ Turing showed that there are indeed numbers that are
-not machine computable, even when we understand by
"machine" a machine in the broadest possible sense: a
Universal Turing Machine. Such uncomputable numbers,
morgover, include the number whose ath figure is 1 if nis the

Gdds! number of a provable proposition of arithmetic, and 0 if

n'is not the Gddel number of a provable proposition of
arithmetic. Thus, Turing showed that there is at least one
mathematical system the provable propositions of which are
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not machine-determinable: formal arithmetic. And the
production of but one such counter-example is sufficient to
disprove Hilbert's original hypothesis about the provability of
all such systems.

In showing his result, Turing employed a version of a
famous argument created about fifty years earlier by the

German mathematician Georg Cantor (1845-1918). The

Cantor "diagonal argument” shows that the rational numbers
(in effect, the simple common fractions} cannot be correlated
one-to-one with the real numbers in their er‘etirety.6 Cantor:
showed that if we have an alleged list of all possible real
numbers, and thereby an alleged correlation of the real
numbers with the counting numbers or positive integers, we
can use this list to construct a real number which is not
included in the list. This is a contradiction. Turing, in effect,
argued analogously about the set of Gddel numbers
corresponding to the provable propositions of arithmetic. If we
allege that the set of these numbers is machine decidable,
then we can arrange them in a list. This list may then be used
to construct. a Godel number of a provabie proposition of
arithmetic, which number, however, is not in the list. This is a
contradiction, and shows that the provable propositions of
arithmetic are not in their entirety machine decidable. It is
worth considering Turing's argument in a little more detail, by
fooking at a version of it that is quite similar to Cantor's actual
diagonal argument.

Let us propose an array of Turing machines, each
machine "matched" to the production of an individual number
whose expression as a decimal is calculable by finite means.-
This proposal accords with Turing's own definitional scheme. -
On the definition of the Universal Turing Machine, then, each
and every individual number so calcuiable, each and every
computable number, must be computable by the Universal
Machine. Turing's question was, by analogy, can we find a
number that is not computable according to this definition by
computability? That is, if we can find a number whose
expression as a decimal is, on this definition of computable
numbers, uncomputable, we would then—to continue Turing's
analogy—have a negative answer to Hilbert's decidability
question: not every mathematical assertion in a given system
could be determined to be provable or not by a purely




118

mechanical process. Let us now seek out such an
uncomputable number.

Our task, now, shall be to illustrate by analogy Turing's
technique of reductio ad absurdum. Assume we can
mechanically compute every real number between 0 and 1
into a decimal expression. This assumption then enables us to
construct at least one additional such decimal expression not
among those computed. We begin a list of such mechanically
computed decimal expressions and continue adding to it. We
can also assigh a numeric counting series to our list of
- decimal expressions, thereby demonstrating that, although we
can continue adding new decimal expressions ad infinitum,
the individual members of our list are nevertheless countable.
We also know, based on the definition of a Turing machine,
that the computation of each such decimal expression is
accomplished by purely algorithmic, mechanical means.
Hence, even though the series of digits representing each
individual decimal is, like the list of decimals itself, of infinite
length, we can, at any specified time, note to which decimal
place as well as to which decimal expression computation has
proceeded: '

.5000000000000000000 . . .
.3333333333333333333 . .

.2500000000000000000 . . .
.6666666666666666666 . . .
.2000000000000000000 . . .
.1666666666666666666 . . .
.4000000000000000000 . . .
.7500000000000000000 . . .
.1428571428571428571 . ..
.6000000000000000000 .

.1250000000000000000 .

= OO~ O A WN -

sk

(Hodges 1983, 101)

Now consider the underlined diagonal string of digits, which
reads 53060600200. . . . Change this diagonal number by
adding 1 to each digit, with the exception that 9 converts to 0:
64171711311, . . . Construction of this infinite decimal, used
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some fifty years previous to Turing's demonstration by Cantor
to display the existence of irrational numbers, is also a method
for identifying an uncomputable number. This number cannot
be a computable number, because it differs from the first
computed decimal number in its first decimal place, from the
fifth computed decimal in its fifth place, and will, in like fashion,
always differ from a given computable number. Hence, this
number cannot ever be included in the list of mechanically
computable numbers, no matter to what length the list is
extended. On Hilbert's assumption, this diagonal number, as a
computable number by Turing's definition, had {0 be included -
in the list, and yet was later shown by Turing himself not to be
in the list: thus, a glaring contradiction. This diagonal number,
by virtue of being new, or not in "the list," is accounted for by a
creative, pragmatic act of observation and learning rather than
by a non-creative, mechanical, anti-pragmatic operation. To
this number, then, would correspond a provable mathematical
assertion which cannot be demonstrated to be such by those
same mechanical means that Hilbert's formalism demanded
as exhaustive: again, a contradiction. With these "conceivable
practical effects,” then, the Hilbert decidability question is
settled in the negative, and his anti-pragmatic program for
epistemology is brought into question.

NOTES

1see Reid 1970 and Hodges 1983. Reid's book,

arguably one of the better expositions on Hilbert in English,
nevertheless suffers from a pronounced lacuna of references.
No bibliography is supplied, a cursory group of notes is given
for the entire work, and the index is but a rudimentary
compilation of names. This situation thwarts thorough
documentation of the many telling remarks by Hilbert which
Reid supplies. 1 therefore enjoin the caveat given by Hodges
at his note 2.9, which states, "Here and elsewhere | have
drawn upon C. Reid, Hilbert . . . for quotations.”

2pgirce's own definition of "axiom,” given in the
original, 1889 edition of The Century Dictionary and
Cyclopedia, comports well with Parsons' remarks. In the
course of his definition, Peirce likewise outlines but further
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‘details the history of this term, referring in due course to Plato,
Aristotle, Euclid, Leibnitz, Kant, Bacon, Zeno, and "modern
mathematicians” (preserved at P 00373 in Ketner and Stewart

.1986). _

3The version of this maxim Peirce provided
“during the course of his "How to Make Our ldeas Clear"
(Popular Science Monthly 12 {1878) reads: "Consider what
effects, which might conceivably have practical bearings, we
conceive the object of our conception to have. Then, our
conception of these effects is the whole of our conception of
the obhject.”

4at the urging of his colleagues Oskar Minkowski
and Adolf Hurwitz, Hilbert shortened his remarks by
actually stating only ten of the twenty-three questions he
had prepared: nos. 1, 2, 6, 7, 8, 13, 16, 19, 21, and 22. The
text of Hilbert's address, transiated with his permission,
was preserved by Dr. Mary Winston Newson in the Bulletin of
the American Mathematical Society 8 (1902). Apparently
Minkowski was of the opinion that the formation of this list
of “foundations" questions for mathematics would ensure

Hilbert's position in the hlstory of mathematics: he was

right.

9see Godel's "Uber formal unentscheidbare Satze
der Principia Mathematica und verwandter Systeme "
. Monatshefte fiir Mathematik und Physik 38 (1931): 173-98,
. preserved as "On Formally tUndecidable Propositions
of Principia Mathematica and Related Systems I," in Davis
1965.

6More complete definitions of the important terms
for this example are given under the appropriate entries
in Baker 1961. A rational number is & number which can
be expressed in the form p/q where p and g are integers
and q is not zero (1/2, 1/3, 1/4, and so forth). An irrational
number is a number which cannot be so expressed as
an integer or the quotient of integers {pi, the square root
of 2, and the like). A real number may be rational or
irrational.
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